Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds.

نویسنده

  • Axel Hutt
چکیده

The work proposes and studies a model for one-dimensional spatially extended systems, which involve nonlocal interactions and finite propagation speed. It shows that the general reaction-diffusion equation, the Swift-Hohenberg equation, and the general Kuramoto-Sivashinsky equation represent special cases of the proposed model for limited spatial interaction ranges and for infinite propagation speeds. Moreover, the Swift-Hohenberg equation is derived from a general energy functional. After a detailed validity study on the generalization conditions, the three equations are extended to involve finite propagation speeds. Moreover, linear stability studies of the extended equations reveal critical propagation speeds and unusual types of instabilities in all three equations. In addition, an extended diffusion equation is derived and studied in some detail with respect to finite propagation speeds. The extended model allows for the explanation of recent experimental results on non-Fourier heat conduction in nonhomogeneous material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Probing a subcritical instability with an amplitude expansion: how far can one get?

We evaluate a method to describe subcritical transitions in systems with a finitewavelength instability (pattern forming systems) by means of a direct expansion in the amplitude of the linearly least stable mode. We apply the method to two model equations, a subcritical generalization of the Swift-Hohenberg equation and an extension of the Kuramoto-Sivashinsky equation. We assess the reliabilit...

متن کامل

Probing a subcritical instability with an amplitude expansion: An exploration of how far one can get

We explore methods to locate subcritical branches of spatially periodic solutions in pattern forming systems with a nonlinear finite-wavelength instability. We do so by means of a direct expansion in the amplitude of the linearly least stable mode about the appropriate reference state which one considers. This is motivated by the observation that for some equations fully nonlinear chaotic dynam...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Disclinations in square and hexagonal patterns.

We report the observation of defects with fractional topological charges (disclinations) in square and hexagonal patterns as numerical solutions of several generic equations describing many pattern-forming systems: Swift-Hohenberg equation, damped Kuramoto-Sivashinsky equation, as well as nonlinear evolution equations describing large-scale Rayleigh-Benard and Marangoni convection in systems wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007